a2 United States Patent

Yu

US009468844B1

US 9,468,844 B1
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

")

@

(22)

(1)

(52)

(58)

METHOD FOR TRANSMITTING SIGNALS
BETWEEN WEARABLE MOTION CAPTURE
UNITS AND A VIDEO GAME ENGINE

Applicant: Chun Hung Yu, Markham (CA)
Inventor:

Chun Hung Yu, Markham (CA)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 15/001,704

Filed: Jan. 20, 2016

Int. CL

AG63F 13/211 (2014.01)

AG63F 13/212 (2014.01)

AG63F 13/235 (2014.01)

U.S. CL

CPC AG63F 13/211 (2014.09); A63F 13/212

(2014.09); A63F 13/235 (2014.09)
Field of Classification Search
CPC AG63F 13/20; AG63F 13/21; AG63F 13/211;
AG3F 13/212; A63F 2300/10; AG63F
2300/105
USPC e 463/36; 345/156
See application file for complete search history.

[MUs + slave microcontrollers
+ vibration motors + LEDs

Master microcontroller

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0100588 Al* 5/2008 Nogami GO6F 3/016
345/173
2009/0069081 Al* 3/2009 Thorner A63F 13/02
463/30
2015/0035743 Al* 2/2015 Rosener GO6F 3/014
345/156
2015/0084860 Al* 3/2015 Aleem GO6F 3/017
345/156

* cited by examiner
Primary Examiner — Allen Chan

(57) ABSTRACT

A method for transmitting signals between wearable motion
capture units and a video game engine enables user body
movement to be captured and inputted into a video game
engine. The user wears a plurality of inertial measurement
units (IMUs) as well as a plurality of vibration motors and
a plurality of LEDs. The video game engine is able to
provide haptic and visual feedback to the user via the
plurality of vibration motors and the plurality of LEDs.
Captured user body movement data is received through a
plurality of slave microcontrollers and transmitted to a
master microcontroller. The master microcontroller converts
the user body movement data to video game engine-ready
data. The video game engine-ready data is then converted by
the video game engine to haptic and visual feedback
response data and transmitted back to the master microcon-
troller.

9 Claims, 20 Drawing Sheets

Computing device
+ video game engine

U.S. Patent Oct. 18, 2016 Sheet 1 of 20 US 9,468,844 B1

(A) Providing a plurality of inertial measurements units (IMUs) and a
plurality of slave microcontrollers, wherein each of the plurality of
IMUs is electronically connected to a corresponding microcontroller
from the plurality of slave microcontrollers

(B) Providing a plurality of vibration motors and a plurality of light-
emitting diodes (LEDs), wherein each of the plurality of vibration
motors and each of the plurality of LEDs is electronically connected to
a corresponding microcontroller from the plurality of slave
microcontrollers

(C) Providing a master microcontroller, a computing device, and a
video game engine, wherein the master microcontroller is
communicatively coupled to the computing device and the plurality of
slave microcontrollers, and wherein the video game engine is installed
onto a storage device of the computing device

(D) Capturing body movement data through the plurality of IMUs

(E) Receiving the body movement data
through the plurality of slave microcontrollers

@

FIG. 1A

U.S. Patent Oct. 18, 2016 Sheet 2 of 20 US 9,468,844 B1

N

(F) Continuously transmitting the body movement data from the
plurality of slave microcontrollers to the master microcontroller

(G) Converting the body movement data to video game
engine-ready data through the master microcontroller

(H) Transmitting the video game engine-
ready data to the video game engine

(I) Converting the video game engine-ready data to haptic
feedback response data through the video game engine

(J) Transmitting the haptic feedback response data from
the video game engine to the master microcontroller

@

FIG. 1B

U.S. Patent Oct. 18, 2016 Sheet 3 of 20 US 9,468,844 B1

a

(K) Actuating one or more vibration motors from the
plurality of vibration motors and activating one or more
LEDs from the plurality of LEDs, if body movement data is
captured by the corresponding IMU(s) associated with the
one or more vibration motors and the one or more LEDs

(L) Receiving event data from the video game engine,
wherein the event data corresponds to a user body location

(M) Identifying corresponding IMU(s) associated
with the user body location of the event data

(N) Actuating one or more specific vibration motors from the
plurality of vibration motors and activating one or more LEDs
from the plurality of LEDs, wherein the one or more specific
vibration motors and the one or more LEDs correspond with
the IMU(s) associated with the user body location event data

FIG. 1C

US 9,468,844 B1

Sheet 4 of 20

Oct. 18, 2016

U.S. Patent

JUISUD dWES 0dPIA +
901A9p Sunndwo))

¢ OId

IO[[ONUOI0IITUI JASBIN]

ST + S1ojoW UOLBIQIA +
SIO[OIUOI0IIW JAB[S + SN

d

US 9,468,844 Bl

Sheet 5 of 20

Oct. 18, 2016

U.S. Patent

[eLIog

¢ ‘DId
/
/
/
!
\\
Aan
/
M Dd P
\ \\
\ \
/ /
UOIBOTUNTIWIO))
fy
Emhom \\ \\\ \\\‘
\ \\ \\\
\\\\ \\\
\\\\ \\\
aseq -
- =oveas |ty T I'
oumply | yonesrunurwio)) ZHD V¥'C

18 SSO[RII M

\
SPON 10SUD
29gX PN >
uoneduNWWo) | OUMpIy
uog -
Ve N
SPON JOSUD
sogX PoN >
uonesunwwoy) | OUMpIy
_ J
[eLoS
SR q)
SPON JOSUD
39X e » PN >
UONROTUNUWIO)) oumpry
- ~ g
[eLIoS
S 4 h
SPON 10SUD
00X e PON >
uoneduNWWo) | OUMpIy
T pweg -
4|
2d09s0IAD) +
1513WOIIIOY

U.S. Patent Oct. 18, 2016 Sheet 6 of 20 US 9,468,844 B1

Providing a wireless transceiver for each of the plurality of IMUs

Wirelessly transmitting the body movement data from each of the
plurality of slave microcontrollers to the master microcontroller through
the wireless transceiver

Wirelessly transmitting the video game-engine ready data
to the video game engine through the computing device

Wirelessly transmitting the response data from the
video game engine to the master microcontroller

FIG. 4

U.S. Patent Oct. 18, 2016 Sheet 7 of 20 US 9,468,844 B1

Wherein the plurality of IMUs includes a
first wrist IMU, a second wrist IMU, a
first ankle IMU, and a second ankle IMU

Wherein each of the plurality of IMUs
comprises at least one accelerometer and
at least one gyroscope

FIG. 5

U.S. Patent Oct. 18, 2016 Sheet 8 of 20 US 9,468,844 B1

Providing a connection wire for the master microcontroller

Electronically connecting the master microcontroller
to the computing device through the connection wire

FIG. 6

U.S. Patent Oct. 18, 2016 Sheet 9 of 20 US 9,468,844 B1

Providing a wireless sync transmitter for the master microcontroller

Providing a wireless sync receiver for the computing device

Wirelessly syncing the master microcontroller, the plurality of slave
microcontrollers, and the plurality of IMUs to the computing device
through the wireless sync transmitter and the wireless sync receiver

FIG. 7

U.S. Patent Oct. 18, 2016 Sheet 10 of 20 US 9,468,844 B1

Complete Base Arduino Code

#include <Liquidcrystal.h>

#include <SoftwareSerial.h>
#include <wire.h> //The 12C Tibrary
#include "Timerone.h"

// ek Redefek RfekkRfe ke kiR kRl R e Sk R R fefe ke fekk u"nnu"nuuuiﬁ“k‘k‘knuunnu"nnu"nnu"nnu"nuu"nuunn//
// Arduino xBee Base //
//This program will periodically transmit each of the node addresses, then storing away //
//the data they send. Combining the data from the four nodes and sending it to unity //
//in one packet //
// /7
//Dec 12, 2015 //
//WP1tten by Patr1ck R1d1ey //
// ﬂl\vvv:’:.’:.’:*tvl\«vﬂtvl\«vﬂtv4vvvt\tv4vvvﬂt~4vvvﬂtv4vvv:’:.’:.’v‘*tvl~4vﬂtvl~vvt\tvl\vvﬂtv«vvvﬂtv4vvvtvtv4vvvﬂtv4vt\v//
Ligquidcrystal lecd(12, 11, 5, 4, 9, 8); //sets LCD pins for RS,Rw, and D4 to D7 respectively
softwareSerial XBee(Z 3); // RX, TX set to pins 2 and 3 respectively
int ledpPin = 10; //sets LED pin
int f1a% //Timer interrupt flag to determine next sensor read
int hit 1ag = 0; //Flag set when certain data sent from uUnity
char node_1[20] = "0:0:0"; //Initiates the character arrays to store sensor data in
char node_2[20] = "0:0:0";
char node_3[20] = "0:0:0";
char node_4[20] = "0:0:0";
int count = 0; //Count to increment in interrupt, used to determine
when to next read sensors
int count2; //count for timing to set hit LED off
void setup()

?1nM0de(1edP1n, OUTPUT) ; //sets ledpin

cd.begin(16, 2);

Serial.begin (57600);

XBee . begin(57600) ; //Opens xBee communication

Timerl.initialize(70000 //Initiates timer for every 70ms

Timerl. attachInterrupt(ca11back) //Attatches interupt to 'callback' function

}

void Toop()
int buffsize;
char unityread[10];
?h11e (@h)

buffsize = Serial.available();
}f (buffsize > 0)

serial. readBytesUnt11(\n', unityread, buffsize);
if (unityread[0] = 'H")

hitflag = 1;
}
if (hitflag == 1)
digitalwrite(ledPin, HIGH);
else digitalwrite(ledPin, LOW);
}f (flag == 1) //waits until next timed event to read
read_node('A', node_1);
read_node('B', node_2);
read,node('c', node_3) ;
read_node('D', node_4);
?$nd,to un1ty(), //5ends the new data out to unity through serial
ag =
}

if (count > 2) //Controls how often the LCD is updated

Ted.clear();

F1G. 8A

U.S. Patent Oct. 18, 2016 Sheet 11 of 20 US 9,468,844 B1

Ted.print(node_1);
Ted.setcursor(0, 1);
Ted.print(node_. 2),
count = 0;
}
}
}

¥oid send_to_unity(void)

SeriaT.pr1nt(node 1);
serial.print(':
ser1a1.pr1nt(node 2),
serial.print(':');
ser1a1.pr1nt(node 3);
serial.print(':
serial.print(node_ 4),
SeriaT.pr1nt(‘ '),
serial.print('\n’');
serial.print('\0');

void read_node(char node_address, char *node_buffer)

//This function takes the node address and transmits it through xBee.
// It then Delays long enough for the node to send data back, if the data is valid it is stored

int buff;
char XBee_read[20];
int 1;
XBee. pr1nt(node address); //Transmits the address, if it matches the node will send data back
delay(60); elays for time to rec1eve response bac
buff = XBee.ava11ab1e(), //checks the buffer size
if Cbuff > 0) //data available
XBee.readBytesuntil('\n', XBee_read, buff);
if (XBee_read[0] == node_address) //the First character sent back will be the nodes address,

to confirm the correct node responded
for (i = 1; i < (buff - 1); i++)

node_buffer[i - 1] = XBee_read[i]; //Reading the following data, shifting out address in
first data sTot

for (; 1 < 20; i++)
node_buffer[i - 1] = 0; //Clears the rest of the buffer from previous data

}
3
¥

¥oid callback()
count++;
if (h'ltf'lag == 1)count2++;
flag =
if (countz > 5)

count2 = 0;
hitflag =

FIG. 8B

U.S. Patent Oct. 18, 2016 Sheet 12 of 20 US 9,468,844 B1

Complete Sensor Node Code

#include <Softwareserial.h>
#include <wire.h> // 12C library
#include "Timerone.h"

//*1{***** A fe A0 Fe Yo ¥OTe Yo de Yo e T TR e BN Y T v o fe Yo Ve v Yo fe e 06 Yo Yo Yo ¥ Ao FON Yo ¥ fe FONOT N Fe oS e YO R S e de e T de R de dede S N de de ve S fe de Yo e e W de N de Yo de e fe Yo K

Arduino xBee Sensor Node
//This program will periodically read an accelerometer and gyroscope, taking these values
//and calculating the current orientation of the entire unit.
//when this arduinoc recieves its address (set on programing by the variable address1)
//it will then transmit back the devices oritentation angles to the Arduino Base.
//The data sent back is x and y rotations (0 to 360), along with a z rotation which 1is
//periodically set back to a reference of 180 degrees.

//Dec 12, 2015
//Written by Patr1ck R1d1ey

>E

A T e e e e
NN NN

SoftwareSer1a1 XBee(Z, 3);, // RX, TX; Allows xBee to emu1ate a ser1a1 port on pins 2 and 3

char addressl = 'D';

const int N = 50; //Number of milliseconds between interrupts
unsigned int T; // period between interrupts in microseconds (max value of ~62000 ish due
to 16 bit data type)

int gyro[3]; //values read from sensor

int accel[3]; //values read from sensor

float bias[3]; //calculated bias on bootup

float angle yro[3], //calculated angle from gyroscope

float angl e% //Angles to be sent back through xBee

float pastgyro[3], //Previous gyroscope values

float force; //Total force on device (1G ~= 250)

int flag;

float pitch;

float roll;

int count = 0;
int count2 = 0;

¥oid setup()

int 1;
T =N * 1000; //calculates period and frequency based on interrupt time

XBee.begin(57600); //Opens xBee communication

wire.begin(); //0Opens I2C port

////In1t1a11ze sensors;

//98Hz filter, 1Khz sample rate, 2000deg/s

sendgyro(0x16, 0x1A);

//Div = 9 -> Tsamp = (1+Div)/Sample rate = (1+9)/1000 = 10ms here
sendgyro(0x15, 0x09);

sendaccel (0x31, 0x09); // full range, +/- 4g
sendaccel(0x2D, 0x09);

//Initially calculates the Gyroscope bias at rest and averages over 20 samples

bias[0] = 0;

bias[1] = 0;

bias[2] = 0;

for (i =0; 1 <20; i+4v)
readgyro();
b1as% += gyro[0];

b1as[l] += gyro[1];
bias[2] += gyro[2];

bias[0] = bias[0] / 20

bias[1] = bias[1] / 20

bias[2] = bias[2] / 20

Timerl.initialize(T); //sets the interrupt period
Timerl.attachInterrupt(callback); //attatches interrupt to 'callback' function

}
¥oid Toop (O

FIG. 9A

U.S. Patent Oct. 18, 2016 Sheet 13 of 20 US 9,468,844 B1

char xbee_read[20];
int buff;
byte data;

//Initializes the values for the angles in the gyroscopes
pitch = atanz((acce1[1]) ((acce1[2 M)

pitch = pitch * 180 / (3.14);

pitch += 180;

roll = atanZ((acce1[0]), ((acce1[2]))),

roll = roll * 180 / (

roll += 180;
readacce1();
anglegyro[0] = pitch;
anglegyro[l] = roll;
pastgyro[0] = gyro[0];
pastgyro[1l] = gyro[1];
pastgyro[2] = gyro[2];
?h11e (@)

//Checks for new xbee data recieved
= XBee.available();

1f (buff >= 1) //if data available
XBee.readBytesUntil('x', xbee_read, buff);
if (xbee_read[0] == addressl) //Checks if its device address was hroadcast, if so then send

back this nodes corresponding sensor data

//sends back the sensor data, first byte sent back though is this node address to tell
base which sensor sent the data

XBee.print(addressl);

XBee.pr1nt((1nt)ang1e[0]),

XBee.print(":

XBee.pr1nt((1nt)ang1e[1]),

XBee.print(":

XBee.pr1nt((1nt)ang1e[2]),

XBee.print("\n");

}

1

//Checks for next sensor read condition

if (flag == 1)
readaccel1(};
readgyro();
gyroscope_calc(); //converts the gyroscope readings
accelerometer_calc(); //converts the accelerometer readings
device_angle_calc(); //calculates device angle based on these two measurements
new_hias(}; //updates the bias
flag = 0;

+

}

}
void new_bias(void)

//This function will update the bias as the device is 1in aperation, this is because the
gyroscopes biasing will slowly change over time

//to achieve this we check if the device is relatively static, if so then the gyroscope value
is read and_the bias is updated through a moving average filter

//This filter will change slowly over time but is ideal to keep the value relatively static and
unaffected if any bad readings do occur

fleoat gyro_change[3];

float floataccel[3];

floataccel[0] = accel[0];

floataccel[1] = accel[1];

floataccel[2] = accel[2];

//Total force is equal to the root of the sum of the squares of all the componants

force = (floataccel[0] * floataccel[0]) + (floataccel[1] * floataccel[1]) + (floataccel[2] *
f1oatacce1[2])

force = sqrt(force);

//calculates the change in the gyroscope readings since last time
gyro_change[0] = gyro[0] - pastgyro[0];
gyro_change[1] gyro[1l] - pastgyro[l];
gyro_change[2] gyro[2] - pastgyro[2];

FI1G. 9B

U.S. Patent Oct. 18, 2016 Sheet 14 of 20 US 9,468,844 B1

//If the force 1is between these two values the device can be asusmed to be static

//force of gravity is always measured as between these values, meaning if its in this range
only gravity is affecting it

if {(int)force <250 & {(int)force >240)

djf (fabs(gyro_change[0]) < 5) //if the gyroscope reading havnt changed much since the Tast
reading

bias[0] = 0.99 * bias[0] + 0.01 * gyro[0]; //the bias 1is updated through the moving
average filter, being affected by the new reading

if (fabs(gyro_change[1]) < 5)

bias[1] = 0.99 * bias[1] + 0.01 * gyro[1];
if (fabs{gyro_change[2]) < 5)

bias[2] = 0.99 * bias[2] + 0.01 * gyro[2];

}

//stores the old gyroscope values
pastgyro[0] = gyro[0];
pastgyro[l] = gyro[1];
pastgyro[2] = gyro[2];

1
void device_angle_calc(void)

//This approach uses a complimentary filter to combine the resulting angles given by
accelerometer and gyroscope data
R //S1Ece the Gyroscope data is more stable during movements, the majority of the angle is coming
rom this

float floatangle[3];
floatangle[0] = 0.98 * ang1e?yro[0];

floatangle[0] = fleoatangle[0 * pitch; //using complementary filter to combine gyro
and accelerometer data

floatangle[1] = 0.98 * angle yro[l],

floatangle[l] = f1oatang1e[l? 02 * roll;

//Converts to integer for easy data sending
angle[0] = (int) f?oatang'le[o:l;

angle[1] = (int) floatangle[1];

//accelerometer data isnt possible to measure 'z' rotation, so angle is based purely on the 'z’
gyroscope angle

) angle[2] = anglegyro[2];

void accelerometer_calc(void)

//Takes the read in acceleromater values and calculates the rotation of the device by the
change in x/y value with respect to the z.

//Takin? the inverse tan of x/z and y/z will give us the corresponding roll and pitch
respctively

//offsets result by 180 degrees

pitch = atanZ((acceT[l]) ((acceT[Z]))),

pitch = pitch * 180 / (3.14);

pitch += 180;

roll atanZ((acceT[O]), §(acce1[2]))),

roll = roll # 180 / (3.
roll += 180;

void gyroscope_calc(void)

//Takes the read 1in gyroscope values and will calculate the current angle based off the
gyroscopes angular velocity values

d float deltagyrol[3]; //calculated differrence in read angle from bias, gives the change in
egrees
?/f1oat angular_speed[3];

//offsets the read value, by the bias amount and converts to degrees
deltagyro[0] = (0.05 * ((floatdgyro[0] - bias[0])) / 14.375;
deltagyro[1] = (0.05 * ((fleatdgyre[l] - bias[1])) / 14.375;

FIG. 9C

U.S. Patent Oct. 18, 2016 Sheet 15 of 20 US 9,468,844 B1

deltagyro[2] = (0.05 * ((floatdgyro[2] - bias[2])) / 14.375;

//holds the running sum of the converted gyroscope values, this represents the current angle
anglegyro[0] += deltagyro[0];
anglegyro[1] -= deltagyro[l];
anglegyro[2] += deltagyro[2];

//(UNUSED) uses the change current change in degrees to get an angular speed

//angular_speed[0] = deltagyro[0] / 0.05; //quick estimation of angular speed bassed off change
in value over time

//angular_speed[1]

deltagyro[l] / 0.05;
//angular_speed[2]

= deltagyro[2] / 0.05;
//checks for if the angle went beyond the bounds of 0 to 360 and corrects Jt.
if (anglegyro[0] > 360)
anglegyro[0] = anglegyra[0] - 360;
else if (anglegyro[0] < 0)
ang1egyro%0] = 360 - anglegyro[0];

if (anglegyro[1] > 360)
anglegyro[l] = ang1egyro[1] - 360;

else if (ang1egyro[l] <
anglegyro[l] = 360 - ang1egyro[l];

zoid sendgyro(byte reg, byte data)

//Basic function that sends out the gyroscope address followed by a register and data
//used to set registers in the device

wire.beginTransmission(0x68); //

wire.write(reg);

wire.write(data);

wWire.endTransmission(}; // stop transmitting

1
¥oid readgyro(void)
//This function reads the gyroscopes sensor values and stores them in the gyra[] variable.

int temp[6];

int 1i;

wire.beginTransmission(0x68); //gyroscope address

wire.write(0x1D); Sends the starting register to read from
wire.endTransmission(); // sends a stop on to the bus

//Requests the next 6 reg1sters from the address
wire. reiuestFrom(OxGB 6,

//wait for response of a11 6 registers

}f (Wire.available() == 6)

for (i =0; 1 < 6; 1++)
temp[i] = Wire.read(};

//Concatinates 8 bit rejgsters into one 16 bit value
gyro[0] = (temp[0] << 8) | temp[l];
gyro[1] (temp[2] << 8) | temp[3];
gyrol[2] (temp[4] << 8) | temp[5];

void sendaccel(byte reg, hyte data)
{

//Basic function that sends out the acceleromter address followed by a register and data
//used to set registers in the device

wire.beginTransmission(0x53); //

wire.write(reg);

wire.write(data);

wire.endTransmission(); // stop transmitting

void readaccel(void)
//This function reads the accelerometer sensor values and stores them in the accel[] global

variable.
int 1;

F1G. 9D

U.S. Patent Oct. 18, 2016 Sheet 16 of 20 US 9,468,844 B1

int temp[6];
Wire.beginTransmission(0x53);

//sends starting register
Wire.write(0x32);
Wire.endTransmission(); // sends a stop onto the bus

//requests the next 6 reg1sters from address
Wire.requestFrom(0x53, 6, 1);
//wait for response of all 6 registers
if (Wire.available() == 6)
{
for (i =0; 1 < 6; i++)

temp[i] = wire.read();

}

accel [0] = (temp[1l] << 8) | temp[0];
accel[1] = (temp[3] << &) | temp[2];
accel[2] = (temp[5] << 8) | temp[4];

void read_I2C_bytes(int device, int reg, int *data, int bits)
{

//Generic function to read I2C devices, didnt use in this code, but can simplify both the
accelerometer and gyroscope reading to both using this if needed

int i;

Wire. Beg1nTransm1ss1on(dev1ce), //

wire.write(reg);

Wire.endTransmission(); // stop transmitting

Wire.requestFrom(device, bits, 1);
//Wa1t for response of all 6 registers
f (wire.available() == bits)
for (i =0; 1 < b1ts, i++)

data[i] = wire.read();

//Interupt
zoid callback()

count++;
count2++;
flag = 1;

if (count2 > 30)
{

if (accel[2] > 100 & accel[0] <150 & accel[0] > -150) //only update if z axis is
relativly close to ground plane (otherwise accel reading is often out of whack
// 1f (((int)force <255) & ((int)force »240) & (accel[2] >0))

//Periodically updates the gyroscope values to match the accelerometer angles, this prevents
gyroscope drift. But only doing this when the device is seen to be static so the accelerometer
angles can be trusted.

if ((int)force < 255) //Checks if the force on the device 1is relatively close to just
grav;ty (meaning a static position)

count?2 =
if (((1nt)f0rce > 240) & (accel[2] > 10)) //only want to update the gyroscope value if z
axis is still experiance part of gravity, otherwise the angle is unreliable from accelerometer
anglegyro[0] = 0.5*anglegyro[0] + 0.5%pitch;

anglegyro[1] 0.5*%anglegyro[1l] + 0.5*roll;
anglegyro[2] 180; //resets the z axis to 180

FIG. 9E

U.S. Patent Oct. 18, 2016 Sheet 17 of 20 US 9,468,844 B1

Complete Unity Serial Port Code

using UnityEngine;

using System.Collections;
using System.IO;

using System.IO.Ports;
using system.Threading;

namespace ArduinoSerialInput

/// <summary>

/// Arduino serial Input Class, for taking inputs from the Arduino controller.
/// </summary>

public class ArduinoInput

// constants for delimiter character, and ports

private const char DELTM_CHARACTER = ":';

// class for input. include package and use static methods to access desired
values.)) .) .
private static volatile ArduinoInput instance;

// array of senors, as vector 3 values.
private volatile vector3[] sensors;
private int sensorReadCount = 0;

// serial port to read from. values are arranged in form:
//"<Sensorlx>:<Sensorly>:<Sensorlz>:<Sensor2X>. ..:<sensor3z>/n/0"
private SerialPort serialPort;

private Thread serialThread;

// bool for a11owing thread to end on port close
private bool runReadThread = false;

/// <summary>

/// Singleton pattern constructor. Initializes the vector array for storage of
values read from sensors.

///</summary>

?rivate ArduinoInput()

// initalize sensor array
sensors = hew Vector3[4];
for (int i = 0; i < 4; i+4)

sensors[i] = new vector3(-1, -1, -1);
}

/// <summary>

/// Gets the instance for Arduino serial input. If an Arduino serial dinput
instance does not exist,

/// create one.

/// </summary>

/// <returns>The motion input.</returns>

private static ArduinoInput GetArduinoInput()

if (instance == null)
instance = new ArduinoInput();
return instance;

// <summary>

// Is the port open.

// </summary>

// <returns»<c>true</c>, if the port is open, <c>false</c> otherwise.</returnss>
ublic static bool isPortopen()

return (ArduinoInput.GetArduinoInput().serialpPort != null);

// <summary>

// Opens the serial port.

// </summary>

// <param name="portName'>Port name.</param>

// <param name="baudRate">Baud rate.</param>

// <exception cref="InvalidOperationException">Thrown if existing port is already
open.</exception>

FIG. 10A

U.S. Patent Oct. 18, 2016 Sheet 18 of 20 US 9,468,844 B1

/// <exception cref="IOException”">Thrown if error in opening port</exception>
/// <exception cref="outofMemoryException">Thrown if ReadThread could not he

created due
/// to lack of memory</exception:

public static void openserialPart(string portName, int baudRate)
{

ArduinoInput arduinoSerialInput = ArduinoInput.GetArduinoInput();
// if port is closed create new port, set applicable values, open port,

and start read thread. Otherwise
// throw exception.

if (arduinaserialinput.serialpPort ==

arduinoserialInput
arduinoserialInput
arduinoserialInput
arduinoSerialInput
arduinoserialInput

arduinoserialInput
arduinoserialInput

arduinoSerialInput

else

.serialPort

.serialPort.
.serialPort.
.serialPort
.serialPort
arduinoserialInput.

.StopBits
.DataBits
serialPort.
.serialPort.
.serialpPort

null)
= new SerialPort{portName);

BaudRate = baudRate;
Parity = Parity.None;
= StopBits.One;

= 8
Handshake = ﬁandshake.None;
ReadTimeout = 50;

.open(};

.StartSerialtnputThread();

throw new System,.InvalidoperationException("Port is already opened,

close port to open a hew one.");
}

/// <summary>
/// Closes the serial port.

///<exception cref="InvalidoperationException">Thrown if port is already

closed.</exception>
/// </summary>

?ub11c static void CloseserialPort()

ArduinoInput arduinoSerialInput = ArduinoInput.GetArduinoInput ();
// if port is open set applicable flags to closed value, end read
// thread, and close port, else throw exception.

if (arduinaserialinput.serialpPort != null)

arduinoserialInput.runReadThread = false;
// sleep to allow vector parse thread to end.

Thread.Sleep (1);

if (arduinoSerialrnput.serialPort != null)

arduinoserialInput.serialPort.Close ();
arduinoserialInput.serialPort = null;

else

throw new System.InvalidOoperationException("Port is already

closed.");

I

public static void Sendbata(string data)

ArduinoInput arduinoSerial= ArduinoInput.GetArduinoInput();

arduinoserial.serialpPort.write(data);

Gets the value of the dimension of the sensor requested.

/

/

/ <returns>The value of the desired dimension of the sensor vector.</returns>

/ <param name="sensorNumber">Number of the sensor to reguest.</param>

/ <param name="dimension">Dimension of the sensor to request.(x/y/z)</param>

/ <exception cref="ArgumentoutofRangeException”>Dimension and sensor number must
/

/ <exception cref="IOException">Port must be open to read</exception>>

/// <exception cref="TimeoutException">Timeout aon last read from

/// <summary>
/7
/// </summary:>
’/
//
//
) 7/

be in
/// valid range</exception>
//

sensors</exception>

public static float GetSensorvalue{int sensorNumber, char dimension)
{

ArduinoInput arduinoSerialInput = ArduinoInput.GetArduinoInput();

// Ensure open serijal port

if (arduineSerialInput.serialPort.TIsopen)

// Ensure valid arguments

FI1G.

108

U.S. Patent Oct. 18, 2016 Sheet 19 of 20 US 9,468,844 B1

if (sensorNumber < arduinoserialInput.sensors.Length &&

{

sensorNumber >= 0)

float returnval;
switch (dimension)

// Case X dimension, both upper and lower are valid
case 'x'
case 'x'
returnval =
arduinaserialInput.sensors[sensarNumbher].x;

break;
// Case Y dimension
case 'y':
case 'Y':
returnval =
arduinoSerialInput.sensors[sensorNumber].y;
break;
// Case Z dimension
case 'z':
case 'z":
returnval =
arduinoSerialInput.sensors[sensorNumber].z;
break;
default
throw new

System.ArgumentoutofrRangeException("Dimension must be character x, y, or z.");

// If value in acceptable range (0-360) return it, else
timeout so throw exception
if (returnval != -1)
return returnval;
else
throw new System.TimeoutException("Timeout on read
from sensor.");

else
throw new System.ArgumentoutofRangeException("Sensor
requested does not exist.");
1

else
throw new IOException("Port is not open, open port before trying to
read values.");

?ub11c static int getCurReadNumber()

return ArduinoInput.GetArduinoInput().sensorReadCount;

b

// creates the thread
private void startSerialInputThread()

if (serialThread == null)
{

runReadThread = true;
serialThread = new Thread{new Threadstart(parsevector));
serialThread.start(};

}

// Thread which updates sensor vectors with incoming values.
private void parsevectar ()

{

?h11e (runrReadThread)

// Ensure open serial port
}f {serialPort.Is0pen)

// The value read from the serial input is split into an
array of strings based on the delimiter

// character, and the array of strings is returned to the
Parsedstring array for reading into

// the sensor vectors.

// catching timeouts
try

string inputRaw = serialPort.ReadTo("\n");

// Parse input buffer
// Array strings parsed from arduino input

F1G. 10C

U.S. Patent Oct. 18, 2016 Sheet 20 of 20 US 9,468,844 B1

string[] parsedstring; .
parsedstring = inputRaw.Split(DELIM_CHARACTER) ;

// set values of sensors
for (int i =0; 1 < 4; 1 ++)

1.0 float.TryParse(parsedstring[3*i], out
sensors[i].%);
’ float.TryParse(parsedstring[3*i+1], out
sensors[i].y);
float.TryParse(parsedstring[3*i+2], out
sensors[i].z);

sensorReadCount ++;
catch (System.TimeoutException)

//If time out occurs - due to Tlost connection or any
other reason - set values in vector to

// -1 and check on read. If -1, throw timeout
exception from static read method.

Eor Gnt 3 =0; 1 <3; 1 ++)

sensors[i].x = -1;
sensors[i].y = -1;
) sensors[i]l.z = -1;
) }
// sleep thread for efficiency, less then a frame for smooth
movement.
) Thread.sTeep(10);
}
/// <summary>
/// Close serial port and clean up
/// </summary>
~ArduinoInput()
{
) ArduinoInput.CloseserialpPort();
}
}

FIG. 10D

US 9,468,844 B1

1
METHOD FOR TRANSMITTING SIGNALS
BETWEEN WEARABLE MOTION CAPTURE
UNITS AND A VIDEO GAME ENGINE

FIELD OF THE INVENTION

The present invention relates generally to a method for
increasing motion-based interactivity between video games
and players. More specifically, the present invention is a
method for transmitting signals between wearable motion
capture units and a video game engine.

BACKGROUND OF THE INVENTION

The advancement of the video game industry has led to
the emergence of new technologies that increase interactiv-
ity between video games and players. Virtual reality pro-
vides an immersive experience that places players into
lifelike three-dimensional environments. Aside from being
able to experience a virtual environment, players are typi-
cally able to interact with the environment as well. In
addition to virtual reality, motion-based technology has
become increasingly prevalent in video games. Players are
typically required to wear or hold an electronic device that
is capable of capturing their body movements and translat-
ing the body movements into corresponding actions within
the video games. Motion-based technology greatly enhances
the physical aspect of video games that traditionally only
required physical user input through a controller device.

The present invention is a method for transmitting signals
between wearable motion capture units and a game engine.
This enables a player’s movements to be captured and
translated to the game engine. As such, the player’s move-
ments are able to influence the environment rendered by the
game engine. The player additionally receives haptic feed-
back through the wearable motion capture units based on
events transpiring within the environment rendered by the
game engine.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a flowchart illustrating the overall process that
is followed by the present invention.

FIG. 1B is a continuation of the flowchart illustrated in
FIG. 1A.

FIG. 1C is a continuation of the flowcharts illustrated in
FIG. 1A and FIG. 1B.

FIG. 2 is a diagrammatic overview of the present inven-
tion.

FIG. 3 is an additional diagrammatic overview of the
present invention.

FIG. 4 is a flowchart of the secondary process that is
followed by the present invention.

FIG. 5 is a flowchart of the overall process that is followed
by the present invention and additional details for the
plurality of IMUs.

FIG. 6 is a flowchart of the secondary process that is
followed by the present invention.

FIG. 7 is a flowchart of the secondary process that is
followed by the present invention.

FIG. 8A is a code for the master microcontroller (Ar-
duino).

FIG. 8B is a continuation of the code for the master
microcontroller (Arduino).

FIG. 9A is a code for the plurality of slave microcon-
trollers (Arduino).

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 9B is a continuation of the code for the plurality of
slave microcontrollers (Arduino).

FIG. 9C is a continuation of the code for the plurality of
slave microcontrollers (Arduino).

FIG. 9D is a continuation of the code for the plurality of
slave microcontrollers (Arduino).

FIG. 9E is continuation of the code for the plurality of
slave microcontrollers (Arduino).

FIG. 10A is a code for the game engine (Unity).

FIG. 10B is a continuation of the code for the game engine
(Unity).

FIG. 10C is a continuation of the code for the game engine
(Unity).

FIG. 10D is a continuation of the code for the game
engine (Unity).

DETAIL DESCRIPTIONS OF THE INVENTION

All illustrations of the drawings are for the purpose of
describing selected versions of the present invention and are
not intended to limit the scope of the present invention.

The present invention is a method for transmitting signals
between wearable motion capture units and a video game
engine. The overall process that is followed by the present
invention is shown in FIG. 1A, FIG. 1B, and FIG. 1C while
diagrammatic overviews of the present invention are shown
in FIG. 2 and FIG. 3. Secondary processes that are followed
by the present invention are shown in FIGS. 4-7.

With reference to FIG. 1A, the present invention makes
use of a plurality of inertial measurement units (IMUs) and
a plurality of slave microcontrollers. The plurality of IMUs
is worn on the user’s body and is able to capture body
movement data based on the user’s movements. The body
movement data corresponds to movements within a video
game engine. Each of the plurality of IMUs is electronically
connected to a corresponding microcontroller from the plu-
rality of slave microcontrollers. As such, the plurality of
IMUs may be worn on multiple user body locations to more
accurately capture the user’s body movement data. As
shown in FIG. 2 and FIG. 5, in the preferred embodiment of
the present invention, the plurality of IMUs includes a first
wrist IMU, a second wrist IMU, a first ankle IMU, and a
second ankle IMU, enabling body movement data to be
captured from these user body locations. However, the
plurality of IMUs may include additional IMUs for captur-
ing body movement data from additional user body loca-
tions. Fewer IMUs may be utilized as well. Again with
reference to FIG. 1A, body movement data captured by the
plurality of IMUs is transmitted to the plurality of slave
microcontrollers. The present invention additionally utilizes
a plurality of vibration motors and a plurality of light-
emitting diodes (LEDs). The plurality of vibration motors
and the plurality of LEDs provide the user with haptic and
visual feedback from the video game engine based on the
user body movement data as well as events that occur within
the video game engine. Each of the plurality of vibration
motors and each of the plurality of LEDs is electronically
connected to a corresponding microcontroller from the plu-
rality of slave microcontrollers. This enables the user to
receive feedback from the plurality of vibration motors and
the plurality of LEDs on one or more user body locations on
which the plurality of IMUs is worn. Finally, a master
microcontroller and a computing device are utilized by the
present invention. The video game engine is installed onto a
storage device of the computing device. The master micro-
controller is communicatively coupled to the computing
device and the plurality of slave microcontrollers. This may

US 9,468,844 B1

3

be accomplished via a wireless or wired connection between
the master microcontroller and the computing device. The
master microcontroller enables feedback and two-way com-
munication between the video game engine and the plurality
of slave microcontrollers. In the preferred embodiment of
the present invention, the master microcontroller is an
Arduino microcontroller board, although similar microcon-
troller devices may be utilized. Additionally, each of the
plurality of slave microcontrollers is preferably an Arduino
microcontroller board as well.

Again with reference to FIG. 1A and FIG. 5, body
movement data is captured through the plurality of IMUs.
The plurality of IMUs is able to capture the velocity and
orientation of one or more user body locations as the user
moves. In the preferred embodiment of the present inven-
tion, each of the plurality of IMUs comprises at least one
accelerometer and at least one gyroscope. The at least one
accelerometer is able to detect magnitude and direction of
proper acceleration experienced by the user body locations
during movement. The roll and pitch of each of the plurality
of IMUs are determined using the following equations:

Roll = arctan(g)

Pitch = arctan(%)

The variables x, y, and z are indicative of acceleration on the
X, y, and z axes while roll and pitch are indicative of rotation
on the x-axis and y-axis, respectively. Because yaw cannot
be determined utilizing an accelerometer, a device such as a
magnetometer must be utilized if rotation about the z axis is
desired. The at least one gyroscope functions in conjunction
with the at least one accelerometer and is able to account for
orientation as well as rotation of the user body locations as
the user moves. The position of each of the plurality of IMUs
is determined using the following equation:

P)=POM[V(1)]*dr

The variable P(1) is the current position in degrees while
P(0) is the previous position (position during the previous
reading). The variable V(1) is the angular velocity while dt
is the change in time between the previous reading and the
current reading.

With reference to FIG. 1A and FIG. 1B, after being
captured by the plurality of IMUs, the body movement data
is received through the plurality of slave microcontrollers.
Because each of the plurality of IMUs is electronically
connected to a corresponding microcontroller from the plu-
rality of slave microcontrollers, the plurality of slave micro-
controllers is able to receive body movement data from one
or more user body locations on which the plurality of IMUs
is worn. The body movement data is then continuously
transmitted from the plurality of slave microcontrollers to
the master microcontroller. The master microcontroller is
thus able to aggregate the body movement data from mul-
tiple user body locations. The body movement data is
converted to video game engine-ready data through the
master microcontroller in order to allow the video game
engine to read and interpret the body movement data. In the
preferred embodiment of the present invention, conversion
of the body movement data to the video game engine-ready
data is done through a custom program. The video game
engine-ready data is then transmitted to the video game
engine. The user body movement data may thus be repre-

10

25

30

40

45

50

4

sented in the video game engine, for example, by the user’s
in-game avatar performing the same movements as the user
body movement data.

Further referencing FIG. 1A and FIG. 1B, after the video
game engine-ready data is transmitted to the video game
engine, the video game engine-ready data is converted to
haptic and visual feedback response data through the video
game engine. In the preferred embodiment of the present
invention, the video game engine-ready data is converted to
the haptic and visual feedback response data through another
custom program. The haptic and visual feedback response
data enables the plurality of vibration motors and the plu-
rality of LEDs to provide haptic and visual feedback to the
user as designated by the video game engine. The haptic and
visual feedback response data is then transmitted from the
video game engine to the master microcontroller. The master
microcontroller is able to generate the appropriate response
from the plurality of vibration motors and the plurality of
LEDs based on the haptic and visual feedback response data.
This is accomplished by the master microcontroller by
interpreting the haptic and visual feedback response data
through an additional custom program.

With reference to FIG. 1C, one or more vibration motors
from the plurality of vibration motors is actuated and one or
more LEDs from the plurality of LEDs is activated if body
movement data is captured by the corresponding IMU(s)
associated with the one or more vibration motors and the one
or more LEDs. Within the context of the video game engine,
the actuation of the one or more vibration motors and
activation of the one or more LEDs is purely a haptic and
visual response to the user body movement rather than a
response to an in-game event within the video game engine.

With further reference to FIG. 1C, the present invention
additionally allows for a haptic and visual response to an
in-game event within the video game engine. In this case,
event data corresponding to a user body location is received
from the video game engine. More specifically, the event
data corresponds to an in-game event that elicits a haptic and
visual response to a user body location through the plurality
of vibration motors and the plurality of LEDs. Correspond-
ing IMU(s) associated with the user body location of the
event data are then identified to determine the correct
vibration motors from the plurality of vibration motors to
actuate and the correct LEDs from the plurality of LEDs to
activate. One or more specific vibration motors from the
plurality of vibration motors are actuated and one or more
LEDs from the plurality of LEDs are activated. The one or
more specific vibration motors and the one or more LEDs
correspond with the IMU(s) associated with the user body
location event data. An example of event data that may
generate a haptic and visual response is being hit by an
opponent during an in-game boxing match.

As seen in FIG. 4, each of the plurality of IMUs is able
to utilize a wireless transceiver to enable wireless commu-
nication between the plurality of slave microcontrollers and
the master microcontroller. The body movement data is thus
wirelessly transmitted from each of the plurality of slave
microcontrollers to the master microcontroller through the
wireless transceiver. The elimination of a wired connection
between the plurality of slave microcontrollers and the
master microcontroller eliminates any potential hindrances
to the user’s movement. Additionally, the video game-
engine ready data is wirelessly transmitted to the video game
engine through the computing device, further eliminating
the need for any sort of wired connection. The haptic and
visual feedback response data is wirelessly transmitted from
the video game engine to the master microcontroller,

US 9,468,844 B1

5

enabling fully wireless communication throughout the
method of the present invention. In the preferred embodi-
ment of the present invention, the wireless transceiver is an
xBee module, although similar wireless communication
protocols may be utilized as well.

As shown in FIG. 6, while wireless communication
through the wireless transceiver is preferred, a connection
wire for the master microcontroller may be utilized to
connect the master microcontroller to the computing device.
In this case, the master microcontroller is electronically
connected to the computing device through the connection
wire. This may be useful for a variety of tasks such as
adjusting the settings for the master microcontroller through
the computing device. The connection wire may utilize
Universal Serial Bus (USB) or similar protocol.

With reference to FIG. 7, when first associating the master
microcontroller, the plurality of slave microcontrollers, and
the plurality of IMUs to the computing device, a wireless
sync transmitter for the master microcontroller and a wire-
less sync receiver for the computing device are utilized. The
master microcontroller, the plurality of slave microcon-
trollers, and the plurality of IMUs may thus be associated
with the computing device without the need for a physical
connection. The master microcontroller, the plurality of
slave microcontrollers, and the plurality of IMUs are wire-
lessly synced to the computing device through the wireless
sync transmitter and the wireless sync receiver. This enables
the plurality of IMUs to begin capturing and wirelessly
transmitting the body movement data to the master micro-
controller through the plurality of slave microcontrollers.
The master microcontroller is then able to wirelessly trans-
mit the video game engine-ready data to the video game
engine through the computing device.

Although the present invention has been explained in
relation to its preferred embodiment, it is understood that
many other possible modifications and variations can be
made without departing from the spirit and scope of the
present invention as hereinafter claimed.

What is claimed is:

1. A method for transmitting signals between wearable
motion capture units and a video game engine, the method
comprises the steps of:

(A) providing a plurality of inertial measurement units
(IMUs), a plurality of slave microcontrollers, a plural-
ity of vibration motors, a plurality of light-emitting
diodes (LEDs), a master microcontroller, a computing
device, and a video game engine;

(B) capturing body movement data through the plurality
of IMUs;

(C) receiving the body movement data through the plu-
rality of slave microcontrollers;

(D) continuously transmitting the body movement data
from the plurality of slave microcontrollers to the
master microcontroller;

(E) converting the body movement data to video game
engine-ready data through the master microcontroller;

(F) transmitting the video game engine-ready data to the
video game engine;

(G) converting the video game engine-ready data to haptic
and visual feedback response data through the video
game engine;

(H) transmitting the haptic and visual feedback response
data from the video game engine to the master micro-
controller;

(D) actuating one or more vibration motors from the
plurality of vibration motors and activating one or more
LEDs from the plurality of LEDs, if body movement

15

20

40

45

55

6

data is captured by the corresponding IMU(s) associ-
ated with the one or more vibration motors and the one
or more LEDs;

(I) receiving event data from the video game engine,
wherein the event data corresponds to a user body
location;

(K) identitying corresponding IMU(s) associated with the
user body location of the event data; and

(L) actuating one or more specific vibration motors from
the plurality of vibration motors and activating one or
more LEDs from the plurality of LEDs, wherein the
one or more specific vibration motors and the one or
more LEDs correspond with the IMU(s) associated
with the user body location event data.

2. The method for transmitting signals between wearable
motion capture units and a video game engine as claimed in
claim 1, wherein each of the plurality of IMUs is electroni-
cally connected to a corresponding microcontroller from the
plurality of slave microcontrollers.

3. The method for transmitting signals between wearable
motion capture units and a video game engine as claimed in
claim 1, wherein each of the plurality of vibration motors
and each of the plurality of LEDs is electronically connected
to a corresponding microcontroller from the plurality of
slave microcontrollers.

4. The method for transmitting signals between wearable
motion capture units and a video game engine as claimed in
claim 1, wherein the master microcontroller is communica-
tively coupled to the computing device and the plurality of
slave microcontrollers, and wherein the video game engine
is installed onto a storage device of the computing device.

5. The method for transmitting signals between wearable
motion capture units and a video game engine as claimed in
claim 1, the method comprises the steps of:

providing a wireless transceiver for each of the plurality
of IMUs;

wirelessly transmitting the body movement data from
each of the plurality of slave microcontrollers to the
master microcontroller through the wireless trans-
ceiver,

wirelessly transmitting the video game-engine ready data
to the video game engine through the computing
device; and

wirelessly transmitting the haptic and visual feedback
response data from the video game engine to the master
microcontroller.

6. The method for transmitting signals between wearable
motion capture units and a video game engine as claimed in
claim 1, wherein the plurality of IMUs includes a first wrist
IMU, a second wrist IMU, a first ankle IMU, and a second
ankle IMU.

7. The method for transmitting signals between wearable
motion capture units and a video game engine as claimed in
claim 1, wherein each of the plurality of IMUs comprises at
least one accelerometer and at least one gyroscope.

8. The method for transmitting signals between wearable
motion capture units and a video game engine as claimed in
claim 1, the method comprises the steps of:

providing a connection wire for the master microcon-
troller; and

electronically connecting the master microcontroller to
the computing device through the connection wire.

9. The method for transmitting signals between wearable
motion capture units and a video game engine as claimed in
claim 1, the method comprises the steps of:

providing a wireless sync transmitter for the master
microcontroller;

US 9,468,844 B1
7

providing a wireless sync receiver for the computing
device; and

wirelessly syncing the master microcontroller, the plural-
ity of slave microcontrollers, and the plurality of IMUs
to the computing device through the wireless sync 5
transmitter and the wireless sync receiver.

#* #* #* #* #*

